-
plotly and drawing multiple lines in a single figure
I started using plotly. It renders a nice looking chart by default and interactive. With some efforts, one can return json in the server to render it via js. Another benefit is that charts can be merged. It’s very useful in rendering two different lines, e.g., trainig data + test data in a single chart.…
Tags:
-
Interactive plotly charts on jinja2 + flask
It’s difficult to find explanation on how we can render plotly chart on flask + jinja, so I’m sharing my code snippets. First, in python, given a figure, turn that into json response of flask. The chart data will be served via /get_chart/<chart_name> Prepare js code that can render the given json. Following code inserts…
Tags:
-
twelvedata python api
While I was looking for python api for crypto, I found twelvedata. It’s cheap and seems to be comprehensive. But I don’t like their python api, e.g., using pandas than polars, siliently setting number of rows to fetch even when start date is set. So I stopped using their api and wrote a small code…
-
Sort values in each row of polars df
If your data size isn’t too big, here’s an easy solution. Let’s say you have this data: Use this function to sort values across chosen columns but within each row. As an example, if we sort across [“A”, “C”]:
Tags:
-
How to suppress “Using categorical units to plot a list of strings that are all parsable as floats or dates.”
If log level is set to INFO, “Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.” may be observed when it’s not really relevant. Here’s how to suppress it.
Tags:
-
Outlier, drift detection
I learned alibi-detect today and it looks great. It has many algorithms for outlier and drift detection. The page even has a link for youtube video that explains drift detection.
Tags:
-
웹사이트 성능 최적화
소프트웨어 품질의 끝은 결국 측정과 최적화라고 생각하고, 측정이 모든 접근의 시작이자 끝이라고 생각한다. 측정은 목표를 설정할 수 있게 하고, 그 과정에서 목표 자체에 의미가 있는지 따져보게 한다. 하지만 기술적 지식으로 무장한 엔지니어들은 측정을 먼저 시작하기보다는 해결 방법과 수단을 먼저 떠올리게 되고 그것부터 적용 해 놓고 보려고 한다. 대부분의 경우에 적용되는 훌륭한 룰들은 있어서 그게 항상…
-
ASUS Chromebook Plus CX34
ASUS Chromebook Plus CX34. 또 크롬북을 샀다. 이제 써본게 총 6대째인가. 너무 많이 사봤다. 처음 느낌은 이 정도면 크롬북 수준에서 괜찮은 터치패드, 이 정도면 괜찮은 키감. 살짝 키 간격이 넓은 느낌도 있는데 느낌인 것으로… 터치패드 누를때 들어가는 느낌이 별로라는 리뷰가 맞긴한데, 그런 기대는 크롬북에 바라는게 너무 많은거다. 터치패드의 기본 동작도 잘 안되는 모델이 많으니. 사진만큼…
Tags:
-
Two interesting cross validation in scikit learn
Scikit is excellent esp when considering these advanced tools. One is calibrated classifier cv. It tries to match model’s probability with the actually observed probability. The other is TunedThresholdClassifierCV yet another interesting cv. If application requires different scores, e.g. F1, one can tune the decision threshold using it.
Tags:
-
Getting a probability given a prediction score
Platt scaling is a method to scale score to probability. It uses logistics transformation with some learable parameters. What’s interesting is the use of laplace smoothing (or, uniform prior) to avoid overfitting.
Tags: