library(cvTools) library(doMC) registerDoMC(cores=8) # 10 fold CV folds <- cvFolds(NROW(iris), K=10) foreach(i=1:10) %dopar% { train <- iris[folds$subsets[folds$which != i], ] validation <- iris[folds$subsets[folds$which == i], ] # Write modeling and evaluation code here. # In this example, I'm just returning training and validation data sets # for illustrative purpose. return(list(train=train, validation=validation)) }
Output:
... [[10]] [[10]]$train Sepal.Length Sepal.Width Petal.Length Petal.Width Species 105 6.5 3.0 5.8 2.2 virginica 29 5.2 3.4 1.4 0.2 setosa 18 5.1 3.5 1.4 0.3 setosa 149 6.2 3.4 5.4 2.3 virginica 2 4.9 3.0 1.4 0.2 setosa 43 4.4 3.2 1.3 0.2 setosa 114 5.7 2.5 5.0 2.0 virginica 104 6.3 2.9 5.6 1.8 virginica ... [[10]]$validation Sepal.Length Sepal.Width Petal.Length Petal.Width Species 11 5.4 3.7 1.5 0.2 setosa 44 5.0 3.5 1.6 0.6 setosa 67 5.6 3.0 4.5 1.5 versicolor ...