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Profile
Profile

Defined as a consensus primary structure model consisting of 
position-specific residue scores and insertion or deletion 
penalties
Based either on multiple sequence alignments or 3D structures

Problems with profile
They are complicated models with many free parameters.
A number of difficult problems
• What are the best ways to set the position specific residue 

scores, to score gaps and insertions, and to combine 
structural and multiple sequence information?

• Until recently, these questions have generally been 
addressed in ad hoc fashion. (Eddy, 1996)

HMM (hidden Markov model)
Very general form of probabilistic model for sequences of symbols

Type of questions we can use HMM to consider are

Does this sequence belong to a particular family?

Assuming the sequence does come from some family, what 
can we say about its internal structure?

Example: CpG islands
In the human genome wherever the dinucleotide (A nucleotide 
molecule that consists of a combination of two nucleotide units) CG 
occurs, the C nucleotide is typically chemically modified by 
methylation.

There is a relatively high chance of this methyl-C mutating into T.

Consequently, in general CpG dinucleotides are rarer in genome 
than would be expected from the independent probabilities of C 
and G.



Example: CpG islands (cont)

For biologically important reasons the methylation process is 
suppressed in short stretches of the genome, such as around the 
promoters or ‘start’ regions of many genes.

In these regions, we see more CpG.

Such regions are called CpG islands.

We will consider two questions:

Given a short stretch of genomic sequence, how would we 
decide if it comes from a CpG island or not? → Markov chains

Given a long piece of sequence, how would we find the CpG
islands is in it, if there are any? → hidden Markov models

Markov Chains
We like to show a Markov chain graphically as a collections or 
‘states.’

A Markov chain for DNA can be drawn like this

Markov Chains (cont)

Transition probabilities

The probability of sequence can be obtained as

by applying

In Markov chains, xi depends only on the value of the preceding 
symbol xi-1.
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Markov Chains (cont)

To avoid the inhomogeneity of transition probability, we add start 
and end states.
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Using Markov chains for discrimination
A primary use for P(x) is to calculate the values for a likelihood ratio 
test.

From a set of human DNA sequences, we extracted a total of 48 
putative CpG islands and derived two Markov chain models, one 
for the regions labeled as CpG island (the ‘+’ model) and the other 
from the remainder of the sequence (the ‘-’ model).

The transition probabilities for each model were set using the 
equation

and its analogue for ‘-’ model, where cst means is the number of 
times letter t followed s in the labeled regions.
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Using Markov chains for discrimination (cont)

Resulting tables are:

Using Markov chains for discrimination (cont)

To use these models for discrimination, we calculate the log-odds 
ratio.

Then, table for βis given as below in bits:
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Using Markov chains for discrimination (cont)

Following figure shows the distribution of scores, S(x), normalized 
by dividing by their length, i.e., as an average number of bits per 
molecule. 

If we had not normalized by length, the distribution would have 
been much more spread out.

CpG islandsNon CpG



Hidden Markov Models
How do we find CpG islands in a long sequence?

The Markov chain we just built could be used for this purpose using 
a window of, say, 100 nucleotides.

However, this is somewhat unsatisfactory is we believe that in fact 
CpG islands have sharp boundaries, and are of variable length.

Why use a window size of 100?

A more satisfactory approach is to build a single model for the 
entire sequence that incorporates both Markov chains.

Hidden Markov Models (cont)

To simulate in one model the ‘islands’ and in a ‘sea’ of non-islands 
genomic sequence, we want to have both the Markov chains of 
previous slides in the same model with a small probability of 
switching from one chain to the other at each transition point.

This introduce the complication that we now have two states 
corresponding to each nucleotide symbol.

We resolve this by relabelling the states.

Hidden Markov Models (cont)

The relabelling is the critical step.

The essential difference between a Markov chain and a hidden 
Markov model is that for a hidden Markov model there is not a one-
to-one correspondence between the states and the symbols.

It is no longer possible to what state the model was in when xi was 
generated just by looking xi.

Formal definition of an HMM
We now need to distinguish the sequence of states from the 
sequence of symbols.

We now call the state sequence the path, π. ith state in the path is 
called πi.

The chain is characterized by parameters

cf. In Markov chain,

where xi is a character at ith position of x.
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Formal definition of an HMM (cont)

Because we have decoupled the symbols b from the state k, we 
must introduce a new set of parameters for the model, ek(b).

In general, a state can produce a symbol from a distribution over all 
possible symbols. We therefore define

the probability that symbol b is seen when in state k.

These are known as the emission probabilities.

Joint probability of an observed sequence x and a state 
sequence π.
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Formal definition of an HMM (cont)

For example, the probability of sequence CGCG being emitted by 
the state sequence (C+,G-,C-,G+) in our model is

However, in general, P(x,π) is not useful because we do not know 
the path.

Hence, it is important to find the path.

If we know the path, we can compute P(x|M); a score of x in the 
model M.
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The Viterbi algorithm
This is a dynamic programming algorithm to find a best path.

If we are to choose just one path for our prediction, perhaps the 
one with the highest probability should be chosen,

Suppose that the probability vk(xi) of the most probable path ending 
in state k with observation xi is known for all states k. Then,

When we apply this algorithm to a longer sequence the derived 
optimal path π* will switch between the ‘+’ and the ‘-’ components 
of the model, and thereby give the precise boundaries of the 
predicted CpG island regions.
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The forward algorithm
We want to compute P(x) of a hidden Markov model.
cf. P(x) of Markov chain

We must add the probabilities for all possible paths

This can be computed using the approach similar to the Viterbi
algorithm.

Surprisingly, in many cases
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Profile HMM Profile HMM (cont)

If we assume that we are looking for global matches, have a choice 
of ways to score a match to a hidden Markov model.

The Viterbi algorithm: P(x,π*|M)
The forward algorith: P(x|M)

Profile HMM (cont)

Example: Modelling and searching for globins
From 300 randomly picked globin sequences a profile HMM 
was built.
With this model a database of about 60,000 proteins was 
searched using the forward algorithm.

Profile HMM variants for non-global alignments

We incorporates the original profile HMM together with one or more 
copies of a simple self-looping model.

We call them flanking model states.

The looping probability on the flanking states should be close to 1, 
since they must account for long stretches of sequence.



HMMER
HMMER is an implementation of profile HMM methods for sensitive 
database searches using multiple sequence alignments as queries.

Basically, you give HMMER a multiple sequence alignment as 
input; it builds a statistical model called a "hidden Markov model" 
which you can then use as a query into a sequence database to 
find (and/or align) additional homologues of the sequence family.

hmms (“HMM Search”) looks for global alignments of the entire 
HMM to the entire query sequence.

hmmsw (“HMM Smith/Waterman”) is an HMM version of the stand 
Smith/Waterman algorithm, allowing for local alignments that match 
any fragments of the HMM to any fragment of the query sequence.

Cost of HMM search algorithms
With the exception of PSI-BLAST, profile HMM search algorithms 
are computationally demanding.

Fast hardware implementations of Gribskov profile searches 
(Gribskov et al., 1987) are available.

HMM approaches are also readily parallelized.
Intel Corporation has made a white paper available on using 
MMX assembly instructions to parallelize the Viterbi algorithm 
and get about a 2-fold speed increase on Intel hardware.

References
Sean R Eddy, “Hidden Markov models,” Current Opinion in Structural 
Biology, 6:361-365, 1996.

Sean R Eddy, “Profile hidden Markov models,” Bioinformatcis, 14(9):755-
763, 1998.

Anders Krogh, “An introduction to hidden Markov models for biological 
sequences,” In computational Methods in Molecular Biology, edited by S. L. 
Salzberg, D. B. Searls and S. Kasif, pp. 45-63, Elsevier, 1998.

R. Durbin, S. Eddy, A. Krogh and G. Mitchison, BIOLOGICAL SEQUENCE 
ANALYSIS, Cambridge University Press, 1998.

HMMER: profile HMMs for protein sequence analysis.
http://hmmer.wustl.edu/

Erik L. L. Sonnhammer et al, “Pfam: multiple sequence alignments and 
HMM-profiles of protein domains,” Nucleic Acids Research, 26(1):320-322, 
1998.


