
Minimizing Program Startup Time by I/O Activity Mining

JinKyu Jung
jkjung@camars.kaist.ac.kr

Computer Science Div.,
EECS Dept., KAIST, KOREA

Minkoo Seo
mkseo@bulsai.kaist.ac.kr
Computer Science Div.,

EECS Dept., KAIST, KOREA

Abstract

Disk prefetching has been widely accepted as a way of
minimizing process blocking time due to I/Os. How-
ever, most of current techniques highly depend on man-
ual labors or source program analyses, thereby making
prefetching less attractive and less applicable. Hence,
in this paper, we propose disk prefetching based on rule
based mining approach. In this scheme, we assume
that I/Os happen during program startups are easily pre-
dictable because there are lots of configuration files read
by programs in the initial loading stage. Therefore, we
made such predictable I/Os to be analyzed and automat-
ically prefetched by the kernel. To evaluate the perfor-
mance of the proposed method, we conducted extensive
experiments using a synthesized application and server
programs like Apache and Tomcat. According to the ex-
perimental results, it was shown that the proposed ap-
proach reduced program startup time up to 70% with
synthesized application, and up to 7% with real appli-
cation.

1 Introduction

Disk I/O prefetching techniques are widely investigated
as a way of minimizing process blocking time [3, 4, 5,
7]. The rationale behind prefetching is as follows: If
disk blocks could be loaded in advance, it will save time
needed for disk I/O that will happen in the future. Such
a idea was widely accepted, and made system call like
readaheadinstalled by default.

However, current operating systems do not have any
way of automatically applying readahead system calls.
To alleviate the problem, exploiting user supplied dis-
close [6], compiler based automatic prefetch code in-
sertion [4], mining based algorithm [5] were proposed.
However, each of these approaches has serious draw-
backs. Firstly, user supplied disclose that describes
what will be read in the future lay too much burden

on programmers. Secondly, compiler based algorithms
need heavy modification of compilers and the source
code itself which is not always provided to the software
users. Thirdly, previous mining based algorithms employ
CPU intensive complex mining algorithms that might
not be applicable always. Therefore, we propose a disk
prefetching technique which applies simple data mining
techniques for automatically applying readahead system
calls when a program starts.

In the proposed scheme, it is assumed that the
almost same configuration files are loaded when-
ever program starts. According to our prelimi-
nary experiments it was shown that the assump-
tion holds. For example, one of the famous text
editor, VI, reads /etc/vimrc, /usr/share/vim/colors/*,
/usr/share/vim/syntax/*, etc whoever started the pro-
gram. Hence, proposed scheme works as follows.Tx-
Monitor monitors all I/O activities and delivers that in-
formation toIOMiner. When CPU is idle, the miner gen-
erates I/O rules and pass them to theDiskPrefetcher.
Later, whenever a program starts, DiskPrefetcher does
readahead system calls automatically on behalf of the
program.

The remainder of the paper is organized as follows.
Chapter 2 introduces related works and highlights the
differences between past works and ours. Chapter 3 de-
picts overall system architecture. Chapter 4, 5, and 6
explains TxMonitor, IOMiner, and DiskPrefetcher, re-
spectively. Chapter 7 presents experimental results, and
chapter 8 concludes this paper.

2 Related Work

Kotz tried to detecting more complex pattern within in a
file than the sequential ones [3]. In the paper, some pat-
terns for local prefetching and global prefetching were
designed. According to predefined patterns, files were
prefetched. Though the algorithm was shown to be ben-
eficial in most of time, the patterns proposed were heuris-

tic at best and lack theoretical foundation.
Mowry et al. analyzed matrix operations and in-

serted prefetch operations automatically by compil-
ers [4]. However, their algorithm need source code of
a program. In addition, it is not always possible to to
modify compilers commercially used.

Patterson et al. [7] devised a formula which can
be used to compare pros and cons of prefetching and
caching. Based on the formula, the decision whether to
prefetch or to cache was made. To determine what to
prefetch, their algorithm heavily depends on user sup-
plying disclose [6] which describes what will be read in
the future.

These days, traditional prefetching algorithms are be-
ing applied to network I/O. Nanopoulous et al. pre-
sented web prefetching algorithm based on Markov pre-
dictor [5]. In their approach, a server which implemented
prediction algorithm is assumed. And that server was re-
sponsible for piggybacking prefetching rules. The rules
generated was based on the probabilistic correlation of
document accesses. To the contrary, in this paper, we
only analyze disk I/O activities that follows a program
execution, thereby making expensive probabilistic model
like Markov predictor unnecessary.

3 System Architecture

Our system comprises three components: TxMonitor,
IOMiner, and DiskPrefetcher. Figure 1 shows the overall
architecture.

Figure 1: System architecture and the processing flow of
proposed system

The system operates as follows. (1) When I/O transac-
tion monitoring is enabled and a program starts, I/O ac-

tivities of that program are recorded by TxMonitor. (2)
The activities are passed to IOMiner when the CPU is
idle. (3) IOMiner analyze the I/O activities and finds ini-
tial I/O burst that loads all configuration files. (4) Later,
when the same program starts, (5) DiskPrefetcher does
all readahead required for speeding up that program.

4 TxMonitor

TxMonitor gathers all I/O transactions are explained, and
that information has to be in the form that is well suited
for identifying initial IO burst.

For that purpose, TxMonitor records all program star-
tups and I/O read operations. On one hand, when a pro-
gram starts, just the name of the program is recorded.
On the other hand, when a program perform read opera-
tion, it is needed to records (1) the name of program that
performed read, (2) name of data file that was read, (3)
starting position in the data file, (4) length of data read,
(5) time when the read operation was done.

For example, table 1 shows some parts of I/Os that was
happened afterV I started.1

Table 1: Example IO activities of VI recorded by Tx-
Monitor.

start/stop:1 /bin/vi
start:128 length:826 vi /usr/.../xterm
start:954 length:1318 vi /usr/.../xterm
start:2272 length:10 vi /usr/.../xterm
start:0 length:4096 vi /etc/vimrc
start:0 length:4096 vi /usr/.../evening.vim
start:2381 length:4096 vi /usr/.../evening.vim
start:2381 length:4096 vi /usr/.../evening.vim
start:0 length:4096 vi /usr/.../syntax.vim
start:0 length:4096 vi /usr/.../synload.vim
start:0 length:4096 vi /usr/.../evening.vim
start:0 length:4096 vi /usr/.../syncolor.vim
start:4093 length:4096 vi /usr/.../syncolor.vim
start:0 length:4096 vi /usr/.../syncolor.vim
start:4093 length:4096 vi /usr/.../syncolor.vim
start:2381 length:4096 vi /usr/.../evening.vim
start:1534 length:4096 vi /usr/.../synload.vim
start:0 length:4096 vi /usr/.../filetype.vim
...

Gathering program starts and I/O operations adds very
little overhead according to our preliminary experiments.
However, we added a system call for turning on and off
TxMonitor to entirely avoid unnecessary overheads.

2

5 IOMiner

IOMiner analyzes I/O activities recorded by TxMonitor,
and produce rules that answers the question ofwhat is
the initial I/O activities that are done when the program
ABC starts? This kind of mining is called association
rule mining [1]. However, traditional association rule
mining is not directly applicable to the above problem,
because they did try to answer the problem ofwhat will
happen when X, Y, and Z happened already?In detail,
previous works tried to find one activity that follows sev-
eral activities, whereas we’re trying to find several activ-
ities that follows one activity. Therefore, we developed a
new mining algorithm.

In our scheme, a sliding window of fixed length is
used. The window is placed where a program start is
recorded. Then, all I/O activities within the window is
gathered.

In detail, letX(S)n denote the startup of programX
which started at timen. Also, letX(α)n denote a read
operation that read dataα by programX at timen. For
example, a operation sequenceA(S)0, A(α)1, B(S)2,
A(β)3, C(S)3, B(γ)4 means that ‘Program A started at
time 0. Then, A readα at time 1. After that, program B
started at 2. A readβ at 3. Then, program C started at 3.
Finally, program B readγ at time 4.’ Note that program
start of C and B’s first read operation recorded as if they
happened simultaneously. This is possible because we
record each event in secs.

Given a operation sequence, a sliding window of fixed
length is placed on every program startups. Then, all I/O
activities within the window is considered to be thecan-
didate setof initial I/O activity. If the length of sliding
window is 3, for example, then we get{A(α)1, A(β)3}
as the initial I/O burst ofA. In case of programB, we
get{B(γ)4}.

The candidate set generated from the windowing is not
guaranteed to be the same always. This is due to the
files that is specific to user accounts. For example,V I
reads .vimrc resides in the user home directory, and it
resolves into different file depending on the user account
who executedV I. To grasp common configuration files,
while removing user dependent configurations, we apply
the idea ofconfidence[2].

Let Xn (wheren = 1, 2, . . . , N) denote a candidate
set of initial I/O activity of programX. Note that there
might be several candidate sets because we get a candi-
date set wheneverX starts and TxMonitor is turned on.
The confidence value of an element in the setXn, say
A(α), is computed as follows:

confidence(A(α)) =
of Xn that contains A(α)

N

After computing confidence value of each element in

the candidate set, we remove an element if its confi-
dence value does not exceeds the predefined threshold.
A rule that passed confidence test is turned into the fol-
lowing ruleset: {X(S) ⇒ X(α), X(β), X(γ)}+. Fi-
nally, for the sake of performance, rules in the set are
sorted according to program name,X, and passed to
DiskPrefetcher using a system call.

6 DiskPrefetcher

Given a rule set{X(S) ⇒ X(α), X(β), X(γ)}+ passed
by IOMiner, DiskPrefetcher readahead data fileα, β, and
γ whenever programX starts.

In detail, when a programX starts, a system call,
execve is called. Then, the execve is catched, and
DiskPrefetcher looks up ruleset. For speeding up rule
lookup, a binary search is performed. When the rule is
found, each data file in the rule is opened, and prefetched
into the buffer cache.

7 Performance Evaluation

7.1 Experimental Environment

We implemented proposed prefetching technique in
Linux Kernel 2.6.11. TxMonitor and DiskPrefetcher
were implemented in the kernel, and IOMiner was pro-
grammed as a daemon runs in user level. All programs
run on Intel Pentium 630 CPU(3.0GHz), 180Gbyte
SATA2 7200RPM hard disk, and 1Gbyte main memory.

In the first three experiments, we compared perfor-
mance of proposed scheme with varying CPU time, num-
ber of data files, and data file size, using synthesized ap-
plication. Here, CPU time represents the computation
time between successive reads in the program. The last
experiment run the four widely used applications, VI,
Apache, Mysql, and Tomcat, with and without prefetch-
ing.

7.2 CPU Time

In this section, performance enhancement with different
CPU time was measured. The number of data files were
fiexed as 20, and the sizze of each file was also fixed
as 10KB. Synthesized user program was programmed to
read data file using 4KB buffers. Figure 2 shows the re-
sults. X axis in the figure represents the number of ran-
dom() function calls that has been done to emulate some
computations between reads.

According to the results, prefetching enhanced pro-
gram startup time by fixed amount. However, the dif-
ference was the same whether the CPU time is long or
short. This is due to the fact read operations do not block

3

Figure 2: Performance comparison with various CPU
time

program for a long time, because it does not take long
time to read 4KB data.

7.3 Number of Data Files

In this section, we changed the number of data files
and measured program startup time with and without
prefetching. The size of each data file was fixed as 10KB.
The size of file was determined as such, because data
files of applications like VI, Apache, and Tomcat were
about 10KB.

Figure 3: Performance comparison with various number
of data files

According to the experimental result shown in the fig-
ure 3, prefetching improved program performance as the
number of files increases. In detail, when there are 100
data files, 70% of startup time was reduced. These im-
provements were made because the possibility of process
blocks increased as the number of files increase.

7.4 Data File Size

In this experiment, data files of 500Bytes, 1KB, 10KB,
20KB, 50KB, and 100KB were used. The number of data
file was fixed as 20. Figure 4 depicts the result.

As shown in the figure 4, performance was improved
more as the size of data file increases. In non prefetch-

Figure 4: Performance comparison with various data file
size

ing version,data file size / buffer size read opera-
tions are needed. To the contrary, when prefetching is
applied, onlynumber of data files read operations are
performed. Hence, the number of random I/O decreases
a lot, enhancing overall performance.

7.5 Real Applications

The last experiment assessed the performance enhance-
ment using four widely used applications: VI, Apache,
Mysql, and Tomcat. Figure 5 shows the performance en-
hancement wit prefetching. In the figure, more darker
bars, above which program names are printed, rep-
resents the program startup time without prefetching,
while more lighter colors represents the startup time with
prefetching.

Figure 5: Performance comparison with real applications

As shown in the figure, prefetching decreased the pro-
gram startup time. In case of Tomcat, for example, de-
creased 7% of startup time. Specifically, it is worth not-
ing that the size of data file and the number of data files
played an important role in performance enhancement.

4

8 Conclusion

In this paper, we proposed an I/O activity mining based
program startup time minimizing scheme. In the pro-
posed scheme, TxMonitor gathered process start and I/O
read operation activities. This information was passed
to IOMiner which generated IO rules. When a program
starts, DiskPrefetcher prefetched data files according to
the rules. According to the experimental results, program
startup time decreased up to 7%.

In the future, it is needed to differentiate disk reads
that blocks a process and that does not block the process.
By doing this, it will be possible to generate more intel-
ligent rules. In addition, it also might be possible to con-
sider the number of page references that were loaded by
prefetcher, thereby enhancing cache replacement strat-
egy.

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules”,In Proc. of VLDB
Conf., 1994.

[2] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, “Algo-
rithms for Association Rule Mining - A General
Survey and Comparison”,SIGKDD, 2000.

[3] D. Kotz, C. S. Ellis, “Practical Prefetching Tech-
niques for Parallel File Systems”,In Proc. First In-
ternational Conf. on Parallel and Distributed Infor-
mation Systems, 1991.

[4] T. C. Mowry, M. S. Lam, and A. Gupta, “De-
sign and Evaluation of a Complier Algorithm for
Prefetching”,ASPLOS, 1992.

[5] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos,
“A Data Mining Algorithm for Generalized Web
Prefetching”,IEEE Trans. on Knowledge and DAta
Engineering, 2003.

[6] R. H. Patterson, G. Gibson, and M. Satya-
narayanan, “A Status Report on Research in Trans-
parent Informed Prefetching”,ACM Operating Sys-
tems Review, 1993.

[7] R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka, “Informed Prefetching
and Caching”,In Proc. of ACM Symp. on Operat-
ing System Principles, 1995.

Notes
1Time column was omitted due to the lack of margin in the paper.

5

