
A Survey on In-network Aggregation
in Sensor Networks

Minkoo Seo

Division of Computer Science,
EECS Dept., KAIST, KOREA
{mkseo}@bulsai.kaist.ac.kr

Abstract

Sensor network is an active research area, because of its wide variety of applica-
tions. However, sensors used in in area have limited cpu, memory, battery, and
wireless communications capability. Among them, battery life is the most critical
factor because replacing batteries of sensors is not feasible in many situations.

Hence, the primary concern in this area is to devise an energy efficient algo-
rithms that can be used for sending sensed values to the base station. In-network
aggregation, which exploits routing tree and small but useful computation power
of sensors, is a prominent answer to this problem in the literature. Therefore, in
this paper, general architecture and its variations of in-network aggregation are
explained. An overall architectural option matrix is also provided.

1 Introduction

Recent advances in wireless networks made it possible to distribute smart sen-
sors in a specific region and monitors sensed values. This type of configuration
is called wireless sensor networks, sensor networks, or wireless ad-hoc sensor
networks (WASN). Hereafter, I will simply use the term Sensor Network.

Sensor networks have a wide range of applications: monitoring endangered
species [5][8], assessing structural integrity of bridges [8], or office monitoring [18].
Obviously, these applications depend on the ability of extracting sensed values
from sensors and passing the values to the base station.

However, sensor nodes, used in sensor network, have four major physical
resource constraints: (1) wireless only communication, (2) limited battery, (3)
limited computation power/memory, and (4) unreliability in sensing and com-
munication. These constraints complicate the process of sensing, extracting, and
passing of values. Because of the limited battery, it’s not possible to send values
all the time. Limited computation power and memory hinder us from making a
complex summarization and from just storing all values in sensor nodes. Because
of unreliability, we can’t be sure how long will it take before a node send some
values to us.

To tackle this problem, in-network aggregation is proposed and gaining pop-
ularity. In-network means to sending partially aggregated values rather than raw



2

values, thereby reducing power consumption[14]. And the aggregation means to
send some representative values instead of sending entire values. For example,
MIN, AVERAGE, MAX, and MEDIAN are representative aggregation opera-
tors. Also, to get a more specific data, GROUP BY and HAVING clauses can
be used.

Therefore, in this paper, I will introduce the reason why in-network aggre-
gations are needed, and how in-network aggregations are done.

The plan for the remained of this paper is as follows. In section 2, the char-
acteristics of sensor nodes are explained. In section 3, sending raw data and
in-network aggregation is compared, and the reason why in-network aggregation
is advantageous is explained. After depicting general approach used in in-network
aggregation in section 4, variations used in the scheme are explored in section 5.
Section 6 shows overall architectural option matrix and concludes this paper.

2 Sensor Nodes

Sensor nodes are responsible for sensing data, say temperature, and sending
them to the base station. In this section, four physical constraints of sensor
nodes are explained using the example sensor node, MICA Mote [9], developed
by researchers at UC Berkeley.

1. Wireless Communication The bandwidth of wireless communication is
limited. Mote can send data at the rate of 10kb/s using 917Hz RFM radio.
More importantly, wireless communication uses much more power than exe-
cuting instructions in the node; transmitting a single bit of data is equivalent
to 800 instructions. There’s another interesting property in wireless commu-
nication. Generally, each packet is sent from a node to the other node using
broadcasting. Thus each node within a certain range from the source can
snoop the packet sent from the source.

2. Limited Battery In mote, power is supplied by AA battery pack or a
coin-cell attached through the expansion. Thus Mote can operate for ap-
proximately one year in the idle state and for one week under full load [18].
Therefore, low power algorithm is most important criteria in sensor network.

3. Computation Power and Memory Sensor nodes does not have enough
computation power and memory. MICA Mote has 4MHz Amtel micropro-
cessor with 512 bytes of RAM and 8 kb of code space. Due to this, it is not
always possible to perform complex algorithm, which might be useful if it
could be done, like RSA, or DES.

4. Unreliability Sensor nodes are unreliable in two respects [18]. Firstly, com-
munication link can be simply broken. Secondly, data read from sensor is
uncertain inherently. Sensor usually covers a certain area, but the sensing
happens exactly at one specific position in that area. Therefore, it’s not sure
whether the whole area would have the same value.



3

3 Sending Raw Data versus In-network Aggregation

Sensor networks can be seen as a connected graph. In the graph, there is always
a sink node to which sensed data should be delivered and the sources from where
data should be read and sent. Then, the problem is that how and what values
should be sent to the sink. For that purpose, a tree is built [1][9][10][14][16][17][18][15]
where the root node represents the sink, and the others represents sensor nodes.
Recently, a connected graph where tree and multi-path coexists is also pro-
posed [12]. However, for the shake of exposition, we assume there exists a tree.

3.1 Sending Raw Data

In this scheme, all raw data are sent from the leaf to the root. After leaf nodes
finishing sensing, values are passed to the parent. In turn, after parent nodes’
finishing sensing, values are merged using a simple list or an array. Then, the
value is passed to the grandparents. These procedure continues until reaching
the root. It is also possible for internal nodes to just pass the received packet to
its parent without merging [17].

This is a simple way of passing values, but has severe disadvantages. Firstly,
it consumes a lot of energy than in-network aggregation [16]. Secondly, individual
values does hold much value, so sending raw data is useless [15].

Therefore, it is common to compute aggregates and sending it along the
routing tree [12].

3.2 In-network Aggregation

In-network aggregation, multiple data is aggregated. Then, the aggregated values
are sent along the routing tree. For this purpose, aggregation operators should
behave like the following.

Firstly, the structure of aggregation function should satisfy 〈z〉 = f(〈x〉, 〈y〉)
where f is an aggregation function and x, y, and z is a set of value, respec-
tively [3]. This equation means that the aggregation value is computed from two
or more values.

Secondly, it is desirable for f to satisfy f(x
⋃

y) = g(f(x), f(y)) which means
that the same value should be produced whether f is applied to each values or to
the entire values [9]. As an example, consider AVERAGE aggregation. Suppose
that x = {1, 2} and y = {2, 3}. If we compute AV ERAGE(x

⋃
y), the result will

be 2. Now, if we compute AV ERAGE(AV ERAGE(x), AV ERAGE(y)), then
the result will be also 2.

Because it is less expensive to perform more computation than to send more
data as mentioned earlier, in-network aggregation is widely being accepted as a
common practice.



4

4 General In-Network Aggregation

In this section, a general architecture used in in-network aggregation is explained
before showing variants of it. Henceforth, let G be a graph consists of sensor
nodes. Let Ni represents a node whose ID is i. There also exists a node called
base station, B, to which data should be sent. Let P (Ni) be a parent node of
the node Ni. f represents an aggregate function, and the administrator of this
sensor network is interested in Q.

In in-network aggregation, using ad-hoc routing algorithm like [4][6], a graph
G is built. Then, the query, Q, is sent to all sensor nodes. As an answer, sensed
value of Ni is propagated to P (Ni). Value of P (Ni) is combined with the value
of Ni using f , i.e, z = f(value at Ni, value at P (Ni)) is computed. Then the
new value, z, is propagated to P (P (Ni)) until reaching B. Finally, administrator
get the answer for Q.

In this procedure, interesting problems shown below are raised:

1. Graph Topology: Does G have to be a tree or a connected graph?
2. Sending Queries: How to send Q to all sensor nodes.
3. Synchronization: How can P (Ni) knows whether Ni is trying to its value

or simply the link is broken.
4. Topology Optimization: How to consider the health, say amount of bat-

tery remained or error rate, of Ni.
5. Communication Frequency: How often data should be sent to B? Con-

tinuously? or just from time to time?
6. Aggregation Operators: What kinds of aggregations can be offered?
7. GROUP BY and HAVING: How can GROUP BY and HAVING oper-

ator can be implemented?

In the following section, solutions from the literature will be explained and
compared.

5 Variations in In-network Aggregations

5.1 Graph Topology

In TinyDB [9][10] and Cougar [17], G is a tree. Hence, each Ni sends its value
to P (Ni). This seems to be simple and effective.

However, recently, multi-path graph where multiple edges can exists between
two nodes are is gaining more attention [2][12][13]. The reason is that the data
sent from a sensor to the other is easily lost due to large communication error
rate of wireless communication [13]. The rationale behind multi-path graph is as
follows: if a node sends its value to the multiple parent, the possibility of losing
the value decreases.

To exploit multi-path, however, a way of avoiding double counting the same
value is quite important. For that purpose, [12][13] uses the synopsis. In synopsis,
a path along which a value propagated is considered such that the value will not
be counted more than once.



5

5.2 Sending Queries

When generating a tree, it is possible to exploit a routing algorithm such as
[4][6], or to flood a packet containing Q.

While doing flooding, it is also possible to omit some Q packet [9][10]. Because
each packet is broadcasted in sensor networks, if a node P (Ni) sends its sensed
value to P (P (Ni)), Ni can snoop the packet. If Ni eavesdrops such packet, Ni

will be able to figure out Q and send its sensed value accordingly. In this way,
some packets required for sending Q can be omitted.

It is also possible to designate a leader node which is responsible for sending
Q in its regions [17]. In that case, because the node is a leader, Q and the plan
for processing Q are sent to the nodes by the leader.

5.3 Synchronization

Because wireless communication in sensor networks is unreliable, there’s no triv-
ial way for determining how long P (Ni) should wait before Ni sends its value.
This is where synchronization problem comes in. A trivial solution, periodic sim-
ple [16], is to set a fixed amount of time for a node to wait, but it is not flexible
enough.

To solve this problem, TinyDB [9][10] proposed pipelined aggregate. In that
scheme, queries are answered continuously. Because each value of Ni is sent to
P (Ni) continuously, missing some value of Ni does not matter.

Another problem is to make P (Ni) time out no earlier than Ni. Otherwise,
lots of data will be lost. Therefore, [16] proposed cascading time out. In the
scheme, each node has different timeout value according to its position in G.

5.4 Topology Optimization

Because energy efficiency is one of primary concerns in sensor networks, a tree
optimization algorithm which considers health, batteries remained in this case,
of a node was proposed [7]. In the scheme, a tree is built using flooding. After
then, the tree can change its shape based on the health of the neighbor nodes.
For example, let N1 be the parent of N2 and N3. Also, suppose that N4 is the
sibling of N1. Each nodes informs other nodes of its health periodically. Based on
that information, N1 can determine whether to continue its role as the parent
of N2 and N3, or to transfer the role to N4. In the end, network life can be
elongated.

Challenges in multi-path graph is different from that of tree. Multi-path
approach targets minimizing errors. Hence, it is important to set accuracy as
the parameter supplied by the administrator. In case of [12], G comprises of a
tree region and a multi-path region. The ratio between the number of nodes
participating each region is determined by comparing the error and the user
supplied parameter.



6

5.5 Communication Frequency

Depending on applications, the answer for Q need to be delivered once or many
times. Also, the frequency between successive answer must be adjusted according
to the users’ interest.

In case of TinyDB [9], answers are continuously delivered to the users to
handle synchronization issue mentioned above. Thus TinyDB can not but suffer
from unnecessary communications.

TiNA [14] tries to solve this problem by letting users set the epoch duration
and temporal coherency tolerance. Epoch duration means interval at which data
should be propagated, and temporal coherency tolerance sets the accepted error
rate. Each node compare its previous value and the current value, and then
determine whether to send new value based on temporal coherency tolerance.

TiNA also has another advantage in terms of synchronization. Because P (Ni)
knows the previous value of Ni, P (Ni) can use the previous value of Ni if Ni

fails. Thus error rate plays an important role in synchronization rather than
explicit time out value.

5.6 Aggregation Operators

Simple aggregations include AVERAGE, SUM, and COUNT and implemented
in [9][10][17]. However, there are other complicated aggregations like MEDIAN
and Wavelet Histogram.

In [15], q-digest based MEDIAN operation is proposed. q-digest can be
though of as a histogram whose buckets contains the number of occurrences
of each values. However, sending entire histogram might be comparable to send-
ing entire value if the size of bucket is not wisely managed. To solve this problem,
q-digest assume that individual sensor values do not hold much importance and
that extracting all values is not efficient. Based on these assumptions, q-digest
merge two buckets if the number of occurrences in each bucket is smaller than
the predefined threshold.

On the other hand, [3] explains wavelet histogram applied to TinyDB. In
the scheme, a piecewise wavelet histogram building algorithm is proposed. In
addition, to avoid floating point arithmetics, which is not desirable considering
the limited computation power of sensors, they tried to apply integer wavelet
wherever possible.

5.7 Group By and Having

Group by and Having operators are SQL standard, so it is widely used in in-
network aggregation. It is obvious that it is needed to maintain aggregation
for each group separately. However, just doing so will increase the number of
packets, decreasing network life time. Also, the size of aggregated result might
be larger than the memory of sensors, making it impossible to store the result
within each sensor.



7

To avoid such situations, TinyDB [3] partition sensor nodes according to
group, and then compute f within each group. If there is not enough memory,
then some groups are evicted [9]. TiNA [14] maintains different groups and do
not pay attention to this problem.

Works done by Beaver et al. [1] stands out in this problem where trees are
built according to the group. In detail, a node broadcasts its group ID to the
neighbors. A neighbor node become a child of the broadcasting node if its group
ID coincides with the ID of broadcasting one.

6 Conclusion

In this paper, a general framework of in-network aggregation and its variations
are explored. Table 1 shows overall architectural options that can be chosen
when designing in-network aggregation in sensor networks. Note that options in
each category is not disjoint; thus several of them can be applied together.

Table 1. Architecture options of in-network aggregations

Criteria Category Options

Graph Topology Tree
Multi-Path

Sending Queries Flooding
Exploiting broadcasting characteristics of wireless net-
work
Leader and its region based approach

Synchronization Periodic simple
Pipelined aggregate
Cascading timeout

Topology Optimizations Battery based reorganization
Adjusting the ratio between tree region and multi-path
region

Communication Frequency Only once
Continuously
Epoch duration with temporal coherency tolerance

Aggregate Operators AVERAGE, MIN, MAX, q-digest, Wavelet Histogram

Group By and Having Maintaining groups separately
Evicting some groups if necessary
Group based tree organization

References

1. J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K. Chrysanthis, “Location Aware
Routing for Data Aggregation for Sensor Networks”, In Post Proc. of Geo Sensor
Networks Workshop, 2003.



8

2. J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate Aggregation Techniques
for Sensor Databases”, In Proc. of ICDE, 2004.

3. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond Average: Toward
Sophisticated Sensing with Queries”, In Proc. of IPSN, 2003.

4. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of Net-
work Denstity on Data Aggregation in Wireless Sensor Networks”, In Proc. of
ICDCS-22, 2001.

5. P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein, “Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with ZebraNet”, In Proc. of ASPLOS, 2002.

6. J. Kulik, W. Rabiner, and H. Balakrishnana, “Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks”, In Proc. of Mobicom, 1999.

7. R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. ra-
machandran, “DFuse: A Framework for Distributed Data Fusion”, In Proc. of
SenSys, 2003.

8. C. Lin, C. Federspiel, and D. Auslander, “Multi-sensor Single-Actuator Control of
HVAC Systems”, In Proc. of Intl. Conf. for Enhanced Building Operations, Oct.
2005.

9. S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting Aggregate
Queries Over Ad-Hoc Wireless Sensor Networks”, In Proc. of WMCSA, 2002.

10. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a Tiny AG-
gregation Service for Ad-Hoc Sensor Networks”, In Proc. of OSDI, 2002.

11. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless
Sensor Networks for Habitat Monitoring”, In Proc. of ACM WSNA, 2002.

12. A. Manjhi, S. Nath, and P. B. Gibbons, ‘Tributaries and Deltas: Efficient and
Robust Aggregation in Sensor Network Streams”, SIGMOD, 2005.

13. S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis Diffusion for Robust
Aggregation in Sensor Networks”, In Proc. of SenSys, 2004.

14. M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “TiNA: A Scheme
for Temporal Coherency-Aware in -Network Aggregation”, In Proc. of MobiDE
Workshop, 2003.

15. N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and Beyond:
New Aggregation Techniques for Sensor Networks”, In Proc. of SenSys, 2004.

16. , I. Solis and K. Obraczka, “In-entwork Aggregation Trade-offs for Data Collection
in Wireless Sensor Networks”, INRG Technical Report 102, 2003.

17. Y. Yao and J. Gehrke, “Query Processing in Sensor Networks”, In Proc. of CIDR,
2003.

18. Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query Processing in
Sensor Networks”, SIGMOD Record, Vol. 31, No. 3, Sep. 2002.


